Properties

Label 2.2e5_3e2_13.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3744= 2^{5} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 14 x^{6} - 16 x^{5} + 52 x^{4} - 80 x^{3} + 92 x^{2} - 140 x + 118 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 78\cdot 179 + 26\cdot 179^{2} + 85\cdot 179^{3} + 71\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 133\cdot 179 + 64\cdot 179^{2} + 123\cdot 179^{3} + 110\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 80\cdot 179 + 145\cdot 179^{2} + 65\cdot 179^{3} + 163\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 86\cdot 179 + 63\cdot 179^{2} + 157\cdot 179^{3} + 31\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 133 + 124\cdot 179 + 138\cdot 179^{2} + 53\cdot 179^{3} + 105\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 148 + 84\cdot 179 + 162\cdot 179^{2} + 101\cdot 179^{3} + 171\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 158 + 13\cdot 179 + 91\cdot 179^{2} + 23\cdot 179^{3} + 110\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 167 + 114\cdot 179 + 23\cdot 179^{2} + 105\cdot 179^{3} + 130\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,6)(2,4,5,7)$
$(2,4)(5,7)(6,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,4,3,5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$4$$2$$(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,8,3,6)(2,4,5,7)$$0$
$4$$4$$(1,4,3,7)(2,6,5,8)$$0$
$2$$8$$(1,2,8,4,3,5,6,7)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,8,7,3,2,6,4)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.