Properties

Label 2.2e5_3e2_13.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3744= 2^{5} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 10 x^{6} + 32 x^{5} + 16 x^{4} - 68 x^{3} + 14 x^{2} + 28 x - 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 17\cdot 107 + 79\cdot 107^{2} + 96\cdot 107^{3} + 31\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 8\cdot 107 + 80\cdot 107^{2} + 15\cdot 107^{3} + 52\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 81\cdot 107 + 27\cdot 107^{2} + 104\cdot 107^{3} + 21\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 + 85\cdot 107 + 54\cdot 107^{2} + 8\cdot 107^{3} + 44\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 81\cdot 107 + 45\cdot 107^{2} + 16\cdot 107^{3} + 16\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 75 + 7\cdot 107 + 55\cdot 107^{2} + 2\cdot 107^{3} + 28\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 98 + 72\cdot 107 + 85\cdot 107^{2} + 84\cdot 107^{3} + 24\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 105 + 73\cdot 107 + 106\cdot 107^{2} + 98\cdot 107^{3} + 101\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6,2)(3,7,4,5)$
$(1,6)(2,8)(3,4)(5,7)$
$(2,8)(3,5)(4,7)$
$(1,4,6,3)(2,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $-2$ $-2$
$4$ $2$ $(2,8)(3,5)(4,7)$ $0$ $0$
$2$ $4$ $(1,8,6,2)(3,7,4,5)$ $0$ $0$
$4$ $4$ $(1,4,6,3)(2,5,8,7)$ $0$ $0$
$2$ $8$ $(1,7,8,4,6,5,2,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,5,8,3,6,7,2,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.