Properties

Label 2.2e5_3e2_11.8t8.2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3168= 2^{5} \cdot 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 4 x^{5} - 20 x^{4} - 4 x^{3} + 40 x^{2} - 52 x + 22 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 33\cdot 157 + 69\cdot 157^{2} + 49\cdot 157^{3} + 147\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 48\cdot 157 + 120\cdot 157^{2} + 125\cdot 157^{3} + 40\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 110 + 124\cdot 157 + 102\cdot 157^{2} + 40\cdot 157^{3} + 13\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 112 + 139\cdot 157 + 148\cdot 157^{2} + 109\cdot 157^{3} + 147\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 114 + 42\cdot 157 + 117\cdot 157^{2} + 60\cdot 157^{3} + 53\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 116 + 32\cdot 157 + 7\cdot 157^{2} + 78\cdot 157^{3} + 72\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 118 + 92\cdot 157 + 132\cdot 157^{2} + 28\cdot 157^{3} + 135\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 133 + 113\cdot 157 + 86\cdot 157^{2} + 134\cdot 157^{3} + 17\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,2,3)(4,6,7,5)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,5,2,6)(3,4,8,7)$
$(3,8)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $-2$ $-2$
$4$ $2$ $(3,8)(4,6)(5,7)$ $0$ $0$
$2$ $4$ $(1,8,2,3)(4,6,7,5)$ $0$ $0$
$4$ $4$ $(1,5,2,6)(3,4,8,7)$ $0$ $0$
$2$ $8$ $(1,7,8,5,2,4,3,6)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,8,6,2,7,3,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.