Properties

Label 2.2e5_3e2_11.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3168= 2^{5} \cdot 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 2 x^{6} + 8 x^{5} + 4 x^{4} - 16 x^{3} - 2 x^{2} + 8 x - 23 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3\cdot 23 + 5\cdot 23^{2} + 23^{3} + 7\cdot 23^{4} + 17\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 14\cdot 23 + 16\cdot 23^{2} + 23^{3} + 12\cdot 23^{4} + 21\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 4 + 12\cdot 23 + 9\cdot 23^{2} + 6\cdot 23^{3} + 8\cdot 23^{4} + 13\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 + 22\cdot 23 + 18\cdot 23^{2} + 19\cdot 23^{3} + 14\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 + 13\cdot 23 + 4\cdot 23^{2} + 11\cdot 23^{3} + 23^{4} + 19\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 + 20\cdot 23 + 18\cdot 23^{3} + 10\cdot 23^{4} + 2\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 17 + 6\cdot 23 + 5\cdot 23^{2} + 12\cdot 23^{4} + 21\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 21 + 22\cdot 23 + 7\cdot 23^{2} + 10\cdot 23^{3} + 2\cdot 23^{4} + 11\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,6)(2,8,4,5)$
$(1,7)(2,4)(3,6)(5,8)$
$(1,7)(2,8)(4,5)$
$(1,5,3,2,7,8,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$2$ $4$ $(1,3,7,6)(2,8,4,5)$ $0$ $0$
$4$ $4$ $(1,4,7,2)(3,8,6,5)$ $0$ $0$
$2$ $8$ $(1,5,3,2,7,8,6,4)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,8,3,4,7,5,6,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.