Properties

Label 2.2e5_3e2.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$288= 2^{5} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} + 6 x^{4} - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 13 + 45\cdot 61 + 2\cdot 61^{2} + 15\cdot 61^{3} + 47\cdot 61^{4} + 13\cdot 61^{5} + 54\cdot 61^{6} + 24\cdot 61^{7} + 37\cdot 61^{8} + 53\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 21 + 30\cdot 61 + 40\cdot 61^{2} + 48\cdot 61^{3} + 29\cdot 61^{4} + 34\cdot 61^{5} + 59\cdot 61^{6} + 56\cdot 61^{7} + 58\cdot 61^{8} + 2\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 25 + 21\cdot 61 + 32\cdot 61^{2} + 40\cdot 61^{3} + 19\cdot 61^{4} + 21\cdot 61^{5} + 41\cdot 61^{6} + 29\cdot 61^{7} + 34\cdot 61^{8} + 54\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 30 + 38\cdot 61 + 2\cdot 61^{2} + 18\cdot 61^{3} + 39\cdot 61^{4} + 2\cdot 61^{5} + 40\cdot 61^{6} + 20\cdot 61^{7} + 9\cdot 61^{8} + 46\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 31 + 22\cdot 61 + 58\cdot 61^{2} + 42\cdot 61^{3} + 21\cdot 61^{4} + 58\cdot 61^{5} + 20\cdot 61^{6} + 40\cdot 61^{7} + 51\cdot 61^{8} + 14\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 36 + 39\cdot 61 + 28\cdot 61^{2} + 20\cdot 61^{3} + 41\cdot 61^{4} + 39\cdot 61^{5} + 19\cdot 61^{6} + 31\cdot 61^{7} + 26\cdot 61^{8} + 6\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 40 + 30\cdot 61 + 20\cdot 61^{2} + 12\cdot 61^{3} + 31\cdot 61^{4} + 26\cdot 61^{5} + 61^{6} + 4\cdot 61^{7} + 2\cdot 61^{8} + 58\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 48 + 15\cdot 61 + 58\cdot 61^{2} + 45\cdot 61^{3} + 13\cdot 61^{4} + 47\cdot 61^{5} + 6\cdot 61^{6} + 36\cdot 61^{7} + 23\cdot 61^{8} + 7\cdot 61^{9} +O\left(61^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7)(2,8)(4,5)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$8$$(1,5,7,3,8,4,2,6)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,7,6,8,5,2,3)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.