Properties

Label 2.2e5_3_7e2.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3 \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4704= 2^{5} \cdot 3 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 4 x^{5} - 72 x^{4} + 240 x^{3} - 432 x^{2} + 360 x - 108 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 48\cdot 103 + 97\cdot 103^{2} + 16\cdot 103^{3} + 12\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 92\cdot 103 + 71\cdot 103^{2} + 47\cdot 103^{3} + 51\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 41\cdot 103 + 96\cdot 103^{2} + 17\cdot 103^{3} + 93\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 91\cdot 103 + 51\cdot 103^{2} + 43\cdot 103^{3} + 42\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 + 32\cdot 103 + 55\cdot 103^{2} + 70\cdot 103^{3} + 53\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 31\cdot 103 + 10\cdot 103^{2} + 44\cdot 103^{3} + 78\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 73 + 92\cdot 103 + 26\cdot 103^{2} + 44\cdot 103^{3} + 58\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 100 + 84\cdot 103 + 103^{2} + 24\cdot 103^{3} + 22\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,2,8,7,6,5)$
$(1,8)(2,7)(4,5)$
$(1,8)(2,5)(3,6)(4,7)$
$(1,6,8,3)(2,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,6)(4,7)$$-2$
$4$$2$$(1,8)(2,7)(4,5)$$0$
$2$$4$$(1,3,8,6)(2,7,5,4)$$0$
$4$$4$$(1,5,8,2)(3,7,6,4)$$0$
$2$$8$$(1,4,3,2,8,7,6,5)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,3,5,8,4,6,2)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.