Properties

Label 2.2e5_3_7e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3 \cdot 7^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4704= 2^{5} \cdot 3 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 4 x^{5} - 30 x^{4} + 44 x^{3} - 96 x^{2} + 276 x - 227 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 14\cdot 31 + 23\cdot 31^{2} + 17\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 8\cdot 31 + 6\cdot 31^{2} + 28\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 26\cdot 31 + 16\cdot 31^{2} + 11\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 + 3\cdot 31 + 23\cdot 31^{2} + 3\cdot 31^{3} + 2\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 + 27\cdot 31 + 17\cdot 31^{2} + 30\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 18\cdot 31 + 29\cdot 31^{2} + 28\cdot 31^{3} + 30\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 18 + 12\cdot 31 + 26\cdot 31^{2} + 5\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 28 + 13\cdot 31 + 11\cdot 31^{2} + 28\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,6,8,3,2,4,7)$
$(1,6,3,4)(2,7,5,8)$
$(2,7)(4,6)(5,8)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $-2$ $-2$
$4$ $2$ $(2,7)(4,6)(5,8)$ $0$ $0$
$2$ $4$ $(1,6,3,4)(2,7,5,8)$ $0$ $0$
$4$ $4$ $(1,8,3,7)(2,6,5,4)$ $0$ $0$
$2$ $8$ $(1,5,6,8,3,2,4,7)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,2,6,7,3,5,4,8)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.