Properties

Label 2.2e5_3_5.8t11.3c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{5} \cdot 3 \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$480= 2^{5} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} + 11 x^{4} + 10 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_3_5.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 24\cdot 31 + 19\cdot 31^{2} + 5\cdot 31^{3} + 24\cdot 31^{4} + 25\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 + 24\cdot 31 + 30\cdot 31^{2} + 2\cdot 31^{3} + 2\cdot 31^{4} + 29\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 8 + 21\cdot 31 + 22\cdot 31^{2} + 16\cdot 31^{3} + 8\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 + 8\cdot 31 + 10\cdot 31^{2} + 15\cdot 31^{3} + 26\cdot 31^{4} + 5\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 + 22\cdot 31 + 20\cdot 31^{2} + 15\cdot 31^{3} + 4\cdot 31^{4} + 25\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 + 9\cdot 31 + 8\cdot 31^{2} + 14\cdot 31^{3} + 22\cdot 31^{4} + 4\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 28 + 6\cdot 31 + 28\cdot 31^{3} + 28\cdot 31^{4} + 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 30 + 6\cdot 31 + 11\cdot 31^{2} + 25\cdot 31^{3} + 6\cdot 31^{4} + 5\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,4,8,5)(2,3,7,6)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$2$$(2,7)(3,6)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$1$$4$$(1,4,8,5)(2,3,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,5,8,4)(2,6,7,3)$$2 \zeta_{4}$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.