Properties

Label 2.2e5_3_5.8t11.2c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{5} \cdot 3 \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$480= 2^{5} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} - 4 x^{5} + x^{4} - 8 x^{3} - 12 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_3_5.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 171\cdot 199 + 31\cdot 199^{2} + 5\cdot 199^{3} + 43\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 18\cdot 199 + 75\cdot 199^{2} + 38\cdot 199^{3} + 155\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 14\cdot 199 + 50\cdot 199^{2} + 82\cdot 199^{3} + 20\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 188\cdot 199 + 52\cdot 199^{2} + 166\cdot 199^{3} + 96\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 + 168\cdot 199 + 166\cdot 199^{2} + 42\cdot 199^{3} + 51\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 125 + 20\cdot 199 + 39\cdot 199^{2} + 188\cdot 199^{3} + 102\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 132 + 194\cdot 199 + 41\cdot 199^{2} + 73\cdot 199^{3} + 179\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 160 + 20\cdot 199 + 139\cdot 199^{2} + 147\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,6)(5,8)$
$(1,3,2,7)(4,8,6,5)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,3,2,7)(4,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,7)(4,6)(5,8)$$-2$
$2$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$2$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$2$$2$$(4,6)(5,8)$$0$
$1$$4$$(1,3,2,7)(4,8,6,5)$$2 \zeta_{4}$
$1$$4$$(1,7,2,3)(4,5,6,8)$$-2 \zeta_{4}$
$2$$4$$(1,3,2,7)(4,5,6,8)$$0$
$2$$4$$(1,5,2,8)(3,4,7,6)$$0$
$2$$4$$(1,4,2,6)(3,8,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.