Properties

Label 2.2e5_3_5.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{5} \cdot 3 \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$480= 2^{5} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{5} + 13 x^{4} - 24 x^{3} + 22 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 31 + 21\cdot 31^{2} + 31^{3} + 4\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 5\cdot 31 + 7\cdot 31^{2} + 24\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 22\cdot 31 + 8\cdot 31^{2} + 16\cdot 31^{3} + 14\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 10\cdot 31 + 16\cdot 31^{2} + 17\cdot 31^{3} + 21\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 20\cdot 31 + 15\cdot 31^{2} + 26\cdot 31^{3} + 21\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 + 22\cdot 31 + 25\cdot 31^{2} + 6\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 21 + 8\cdot 31 + 10\cdot 31^{2} + 29\cdot 31^{3} + 16\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 24 + 25\cdot 31 + 18\cdot 31^{2} + 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)$
$(1,6,3,2)(4,8,5,7)$
$(1,8,3,7)(2,5,6,4)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,6)$ $0$ $0$
$2$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $0$ $0$
$2$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$ $0$
$1$ $4$ $(1,2,3,6)(4,8,5,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,3,2)(4,7,5,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,8,3,7)(2,5,6,4)$ $0$ $0$
$2$ $4$ $(1,6,3,2)(4,8,5,7)$ $0$ $0$
$2$ $4$ $(1,5,3,4)(2,7,6,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.