Properties

Label 2.2e5_3_31.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 3 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$2976= 2^{5} \cdot 3 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} + 13 x^{4} + 24 x^{2} + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_3_31.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 14 + \left(13 a + 6\right)\cdot 29 + \left(11 a + 14\right)\cdot 29^{2} + \left(21 a + 6\right)\cdot 29^{3} + \left(11 a + 19\right)\cdot 29^{4} + \left(a + 15\right)\cdot 29^{5} + \left(25 a + 2\right)\cdot 29^{6} + \left(13 a + 18\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 16 + 17\cdot 29 + 2\cdot 29^{2} + 6\cdot 29^{3} + 22\cdot 29^{4} + 14\cdot 29^{5} + 3\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 16 + \left(15 a + 3\right)\cdot 29 + 17 a\cdot 29^{2} + \left(7 a + 15\right)\cdot 29^{3} + \left(17 a + 27\right)\cdot 29^{4} + \left(27 a + 10\right)\cdot 29^{5} + \left(3 a + 10\right)\cdot 29^{6} + \left(15 a + 4\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 15 + \left(15 a + 22\right)\cdot 29 + \left(17 a + 14\right)\cdot 29^{2} + \left(7 a + 22\right)\cdot 29^{3} + \left(17 a + 9\right)\cdot 29^{4} + \left(27 a + 13\right)\cdot 29^{5} + \left(3 a + 26\right)\cdot 29^{6} + \left(15 a + 10\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 13 + 11\cdot 29 + 26\cdot 29^{2} + 22\cdot 29^{3} + 6\cdot 29^{4} + 14\cdot 29^{5} + 28\cdot 29^{6} + 25\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 13 + \left(13 a + 25\right)\cdot 29 + \left(11 a + 28\right)\cdot 29^{2} + \left(21 a + 13\right)\cdot 29^{3} + \left(11 a + 1\right)\cdot 29^{4} + \left(a + 18\right)\cdot 29^{5} + \left(25 a + 18\right)\cdot 29^{6} + \left(13 a + 24\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(2,3)(5,6)$$0$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$2$$3$$(1,2,3)(4,5,6)$$-1$
$2$$6$$(1,5,3,4,2,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.