Properties

Label 2.2e5_31e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{5} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$30752= 2^{5} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - 248 x + 713 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 11 + 11\cdot 59 + 29\cdot 59^{2} + 28\cdot 59^{3} + 54\cdot 59^{4} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 29 + 44\cdot 59 + 43\cdot 59^{2} + 28\cdot 59^{3} + 41\cdot 59^{4} + 43\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 37 + 39\cdot 59 + 24\cdot 59^{2} + 15\cdot 59^{3} + 11\cdot 59^{4} + 33\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 41 + 22\cdot 59 + 20\cdot 59^{2} + 45\cdot 59^{3} + 10\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.