Properties

Label 2.2e5_31.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$992= 2^{5} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} + 37 x^{4} + 164 x^{2} + 196 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 8\cdot 47 + 14\cdot 47^{2} + 21\cdot 47^{3} + 40\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 45\cdot 47 + 21\cdot 47^{2} + 20\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 12\cdot 47 + 25\cdot 47^{2} + 43\cdot 47^{3} + 45\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 18\cdot 47 + 14\cdot 47^{2} + 38\cdot 47^{3} + 14\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 28\cdot 47 + 32\cdot 47^{2} + 8\cdot 47^{3} + 32\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 34\cdot 47 + 21\cdot 47^{2} + 3\cdot 47^{3} + 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 38 + 47 + 25\cdot 47^{2} + 26\cdot 47^{3} + 24\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 45 + 38\cdot 47 + 32\cdot 47^{2} + 25\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.