Properties

Label 2.2e5_23.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$736= 2^{5} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 4 x^{5} + 39 x^{4} - 96 x^{3} + 134 x^{2} - 76 x + 62 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 143\cdot 151 + 43\cdot 151^{2} + 43\cdot 151^{3} + 39\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 102\cdot 151 + 21\cdot 151^{2} + 144\cdot 151^{3} + 114\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 106\cdot 151 + 25\cdot 151^{2} + 29\cdot 151^{3} + 24\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 + 94\cdot 151 + 119\cdot 151^{2} + 62\cdot 151^{3} + 95\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 93 + 58\cdot 151 + 2\cdot 151^{2} + 81\cdot 151^{3} + 94\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 99 + 17\cdot 151 + 131\cdot 151^{2} + 30\cdot 151^{3} + 19\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 109 + 46\cdot 151 + 7\cdot 151^{2} + 14\cdot 151^{3} + 148\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 120 + 34\cdot 151 + 101\cdot 151^{2} + 47\cdot 151^{3} + 68\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3,6,8)(2,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,6,8)(2,4,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.