Properties

Label 2.2e5_17e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9248= 2^{5} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} + 26 x^{6} + 58 x^{4} + 138 x^{2} + 169 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 10\cdot 43 + 41\cdot 43^{2} + 26\cdot 43^{3} + 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 40\cdot 43 + 24\cdot 43^{2} + 13\cdot 43^{3} + 21\cdot 43^{4} + 39\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 24\cdot 43 + 20\cdot 43^{2} + 12\cdot 43^{3} + 42\cdot 43^{4} + 18\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 + 24\cdot 43 + 37\cdot 43^{2} + 9\cdot 43^{3} + 13\cdot 43^{4} + 35\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 + 18\cdot 43 + 5\cdot 43^{2} + 33\cdot 43^{3} + 29\cdot 43^{4} + 7\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 30 + 18\cdot 43 + 22\cdot 43^{2} + 30\cdot 43^{3} + 24\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 37 + 2\cdot 43 + 18\cdot 43^{2} + 29\cdot 43^{3} + 21\cdot 43^{4} + 3\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 41 + 32\cdot 43 + 43^{2} + 16\cdot 43^{3} + 42\cdot 43^{4} + 41\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,3,7)(2,8,5,6)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$2$$4$$(1,4,3,7)(2,8,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.