Properties

Label 2.2e5_17e2.4t3.3c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{5} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$9248= 2^{5} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{4} + 34 x^{2} - 68 x + 34 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 7\cdot 43 + 23\cdot 43^{2} + 40\cdot 43^{3} + 21\cdot 43^{4} + 40\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 14\cdot 43 + 39\cdot 43^{2} + 25\cdot 43^{3} + 12\cdot 43^{4} + 34\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 24 + 21\cdot 43 + 40\cdot 43^{2} + 16\cdot 43^{3} + 22\cdot 43^{4} + 27\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 + 42\cdot 43 + 25\cdot 43^{2} + 2\cdot 43^{3} + 29\cdot 43^{4} + 26\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.