Properties

Label 2.2e5_17.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$544= 2^{5} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} + 10 x^{4} + 54 x^{2} + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_17.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 14\cdot 67 + 8\cdot 67^{2} + 39\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 19\cdot 67 + 5\cdot 67^{2} + 15\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 31\cdot 67 + 13\cdot 67^{2} + 43\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 10\cdot 67 + 16\cdot 67^{2} + 14\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 + 56\cdot 67 + 50\cdot 67^{2} + 52\cdot 67^{3} + 52\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 35\cdot 67 + 53\cdot 67^{2} + 23\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 47\cdot 67 + 61\cdot 67^{2} + 51\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 55 + 52\cdot 67 + 58\cdot 67^{2} + 27\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,4)(5,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,7,6)(2,3,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.