Properties

Label 2.2e5_17.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{5} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$544= 2^{5} \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} - 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 66\cdot 89 + 38\cdot 89^{2} + 73\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 2\cdot 89 + 72\cdot 89^{2} + 61\cdot 89^{3} + 8\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 88\cdot 89 + 10\cdot 89^{2} + 39\cdot 89^{3} + 79\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 85 + 20\cdot 89 + 56\cdot 89^{2} + 76\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.