Properties

Label 2.2e5_149.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 149 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$4768= 2^{5} \cdot 149 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} + 16 x^{2} + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 21\cdot 29 + 25\cdot 29^{2} + 9\cdot 29^{3} + 28\cdot 29^{4} + 11\cdot 29^{5} + 20\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 16 + \left(13 a + 24\right)\cdot 29 + 22 a\cdot 29^{2} + \left(16 a + 17\right)\cdot 29^{3} + \left(6 a + 11\right)\cdot 29^{4} + \left(27 a + 5\right)\cdot 29^{5} + \left(22 a + 2\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 26 + \left(13 a + 4\right)\cdot 29 + \left(22 a + 16\right)\cdot 29^{2} + \left(16 a + 8\right)\cdot 29^{3} + \left(6 a + 1\right)\cdot 29^{4} + \left(27 a + 10\right)\cdot 29^{5} + \left(22 a + 26\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 27 + 7\cdot 29 + 3\cdot 29^{2} + 19\cdot 29^{3} + 17\cdot 29^{5} + 8\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 13 + \left(15 a + 4\right)\cdot 29 + \left(6 a + 28\right)\cdot 29^{2} + \left(12 a + 11\right)\cdot 29^{3} + \left(22 a + 17\right)\cdot 29^{4} + \left(a + 23\right)\cdot 29^{5} + \left(6 a + 26\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 3 + \left(15 a + 24\right)\cdot 29 + \left(6 a + 12\right)\cdot 29^{2} + \left(12 a + 20\right)\cdot 29^{3} + \left(22 a + 27\right)\cdot 29^{4} + \left(a + 18\right)\cdot 29^{5} + \left(6 a + 2\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,6,4)$ $-1$
$2$ $6$ $(1,6,5,4,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.