Properties

Label 2.2e5_139.24t22.1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{5} \cdot 139 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$4448= 2^{5} \cdot 139 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 4 x^{5} - 12 x^{4} - 52 x^{3} + 170 x^{2} + 12 x - 119 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2\cdot 17 + 7\cdot 17^{2} + 4\cdot 17^{3} + 14\cdot 17^{4} + 4\cdot 17^{5} + 9\cdot 17^{6} + 6\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 8 + \left(15 a + 4\right)\cdot 17 + \left(12 a + 1\right)\cdot 17^{2} + \left(14 a + 1\right)\cdot 17^{3} + \left(16 a + 12\right)\cdot 17^{4} + \left(4 a + 4\right)\cdot 17^{5} + \left(16 a + 11\right)\cdot 17^{6} + 13\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 + 3\cdot 17 + 3\cdot 17^{2} + 13\cdot 17^{3} + 2\cdot 17^{4} + 13\cdot 17^{5} + 3\cdot 17^{6} + 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 5 + \left(3 a + 11\right)\cdot 17 + \left(5 a + 14\right)\cdot 17^{2} + \left(12 a + 6\right)\cdot 17^{3} + \left(13 a + 6\right)\cdot 17^{4} + \left(3 a + 3\right)\cdot 17^{5} + \left(16 a + 12\right)\cdot 17^{6} + \left(7 a + 4\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 5 + \left(a + 6\right)\cdot 17 + \left(4 a + 15\right)\cdot 17^{2} + \left(2 a + 2\right)\cdot 17^{3} + 14\cdot 17^{4} + \left(12 a + 9\right)\cdot 17^{5} + 5\cdot 17^{6} + \left(16 a + 15\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 4 a + \left(14 a + 6\right)\cdot 17 + \left(3 a + 10\right)\cdot 17^{2} + 14\cdot 17^{3} + \left(8 a + 9\right)\cdot 17^{4} + \left(12 a + 8\right)\cdot 17^{5} + 6\cdot 17^{6} + \left(6 a + 12\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 4 + \left(2 a + 16\right)\cdot 17 + \left(13 a + 16\right)\cdot 17^{2} + \left(16 a + 10\right)\cdot 17^{3} + 8 a\cdot 17^{4} + \left(4 a + 13\right)\cdot 17^{5} + \left(16 a + 11\right)\cdot 17^{6} + 10 a\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 3 a + 2 + \left(13 a + 1\right)\cdot 17 + \left(11 a + 16\right)\cdot 17^{2} + \left(4 a + 13\right)\cdot 17^{3} + \left(3 a + 7\right)\cdot 17^{4} + \left(13 a + 10\right)\cdot 17^{5} + 7\cdot 17^{6} + \left(9 a + 13\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,6)(2,8,4,5)$
$(1,2,3,4)(5,6,8,7)$
$(1,2)(3,4)(5,8)$
$(1,8,4)(2,3,5)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $-2$ $-2$
$12$ $2$ $(1,2)(3,4)(5,8)$ $0$ $0$
$8$ $3$ $(1,7,2)(3,6,4)$ $-1$ $-1$
$6$ $4$ $(1,7,3,6)(2,8,4,5)$ $0$ $0$
$8$ $6$ $(1,4,7,3,2,6)(5,8)$ $1$ $1$
$6$ $8$ $(1,7,4,8,3,6,2,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,6,4,5,3,7,2,8)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.