Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(416\)\(\medspace = 2^{5} \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.346112.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.104.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{2} + 21x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 10 + 15\cdot 23 + 18\cdot 23^{2} + 10\cdot 23^{3} + 17\cdot 23^{4} + 23^{5} +O(23^{6})\)
$r_{ 2 }$ |
$=$ |
\( 16 + 19\cdot 23 + 19\cdot 23^{2} + 3\cdot 23^{3} + 8\cdot 23^{4} + 6\cdot 23^{5} +O(23^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 12 a + 18 + \left(4 a + 16\right)\cdot 23 + \left(21 a + 17\right)\cdot 23^{2} + \left(13 a + 2\right)\cdot 23^{3} + \left(6 a + 3\right)\cdot 23^{4} + \left(16 a + 9\right)\cdot 23^{5} +O(23^{6})\)
| $r_{ 4 }$ |
$=$ |
\( 11 a + 19 + \left(18 a + 13\right)\cdot 23 + \left(a + 9\right)\cdot 23^{2} + \left(9 a + 9\right)\cdot 23^{3} + \left(16 a + 2\right)\cdot 23^{4} + \left(6 a + 12\right)\cdot 23^{5} +O(23^{6})\)
| $r_{ 5 }$ |
$=$ |
\( 20 a + 7 + \left(14 a + 8\right)\cdot 23 + \left(15 a + 16\right)\cdot 23^{2} + \left(13 a + 3\right)\cdot 23^{3} + \left(19 a + 6\right)\cdot 23^{4} + \left(4 a + 13\right)\cdot 23^{5} +O(23^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 3 a + 1 + \left(8 a + 18\right)\cdot 23 + \left(7 a + 9\right)\cdot 23^{2} + \left(9 a + 15\right)\cdot 23^{3} + \left(3 a + 8\right)\cdot 23^{4} + \left(18 a + 3\right)\cdot 23^{5} +O(23^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,2)(3,6)(4,5)$ | $-2$ |
$3$ | $2$ | $(3,4)(5,6)$ | $0$ |
$3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ |
$2$ | $3$ | $(1,3,4)(2,6,5)$ | $-1$ |
$2$ | $6$ | $(1,6,4,2,3,5)$ | $1$ |