Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 a + 4 + \left(16 a + 4\right)\cdot 29 + \left(a + 17\right)\cdot 29^{2} + \left(4 a + 22\right)\cdot 29^{3} + 13 a\cdot 29^{4} + \left(14 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 21 a + 15 + \left(12 a + 19\right)\cdot 29 + \left(27 a + 8\right)\cdot 29^{2} + \left(24 a + 12\right)\cdot 29^{3} + \left(15 a + 4\right)\cdot 29^{4} + \left(14 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 23\cdot 29 + 25\cdot 29^{2} + 5\cdot 29^{3} + 5\cdot 29^{4} + 7\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 21 a + 25 + \left(12 a + 24\right)\cdot 29 + \left(27 a + 11\right)\cdot 29^{2} + \left(24 a + 6\right)\cdot 29^{3} + \left(15 a + 28\right)\cdot 29^{4} + \left(14 a + 25\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 a + 14 + \left(16 a + 9\right)\cdot 29 + \left(a + 20\right)\cdot 29^{2} + \left(4 a + 16\right)\cdot 29^{3} + \left(13 a + 24\right)\cdot 29^{4} + \left(14 a + 24\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 + 5\cdot 29 + 3\cdot 29^{2} + 23\cdot 29^{3} + 23\cdot 29^{4} + 21\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(4,5)$ |
| $(2,6)(3,5)$ |
| $(1,3,2,4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
| $3$ | $2$ | $(1,2)(4,5)$ | $0$ |
| $3$ | $2$ | $(1,4)(2,3)(5,6)$ | $0$ |
| $2$ | $3$ | $(1,2,6)(3,4,5)$ | $-1$ |
| $2$ | $6$ | $(1,3,2,4,6,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.