Properties

Label 2.2e5_127.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 127 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$4064= 2^{5} \cdot 127 $
Artin number field: Splitting field of $f= x^{6} + 14 x^{4} - 40 x^{3} + 49 x^{2} - 280 x + 654 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.2e3_127.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 10 + \left(10 a + 22\right)\cdot 31 + \left(25 a + 18\right)\cdot 31^{2} + \left(2 a + 26\right)\cdot 31^{3} + \left(14 a + 2\right)\cdot 31^{4} + \left(11 a + 17\right)\cdot 31^{5} + \left(29 a + 29\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 13 + 25\cdot 31 + 15\cdot 31^{2} + 28\cdot 31^{3} + 30\cdot 31^{4} + 18\cdot 31^{5} + 17\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 22 + \left(7 a + 21\right)\cdot 31 + \left(26 a + 25\right)\cdot 31^{2} + \left(29 a + 19\right)\cdot 31^{3} + \left(24 a + 6\right)\cdot 31^{4} + \left(15 a + 10\right)\cdot 31^{5} + \left(6 a + 26\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ a + 8 + \left(20 a + 14\right)\cdot 31 + \left(5 a + 27\right)\cdot 31^{2} + \left(28 a + 6\right)\cdot 31^{3} + \left(16 a + 28\right)\cdot 31^{4} + \left(19 a + 25\right)\cdot 31^{5} + \left(a + 14\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 19 + \left(23 a + 22\right)\cdot 31 + \left(4 a + 8\right)\cdot 31^{2} + \left(a + 22\right)\cdot 31^{3} + \left(6 a + 26\right)\cdot 31^{4} + \left(15 a + 16\right)\cdot 31^{5} + \left(24 a + 23\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 + 17\cdot 31 + 27\cdot 31^{2} + 19\cdot 31^{3} + 28\cdot 31^{4} + 3\cdot 31^{5} + 12\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,5,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)$$-2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$3$$2$$(2,4)(3,6)$$0$
$2$$3$$(1,2,4)(3,5,6)$$-1$
$2$$6$$(1,3,2,5,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.