Properties

Label 2.2e4_7.8t17.2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{4} \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$112= 2^{4} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 6 x^{4} - 12 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 23 + 157\cdot 239 + 183\cdot 239^{2} + 64\cdot 239^{3} + 132\cdot 239^{4} + 95\cdot 239^{5} + 129\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 45 + 235\cdot 239 + 226\cdot 239^{2} + 182\cdot 239^{3} + 232\cdot 239^{4} + 9\cdot 239^{5} + 31\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 64 + 233\cdot 239 + 227\cdot 239^{2} + 16\cdot 239^{3} + 81\cdot 239^{4} + 184\cdot 239^{5} + 35\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 98 + 210\cdot 239 + 114\cdot 239^{2} + 82\cdot 239^{3} + 36\cdot 239^{4} + 55\cdot 239^{5} + 199\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 141 + 28\cdot 239 + 124\cdot 239^{2} + 156\cdot 239^{3} + 202\cdot 239^{4} + 183\cdot 239^{5} + 39\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 175 + 5\cdot 239 + 11\cdot 239^{2} + 222\cdot 239^{3} + 157\cdot 239^{4} + 54\cdot 239^{5} + 203\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 194 + 3\cdot 239 + 12\cdot 239^{2} + 56\cdot 239^{3} + 6\cdot 239^{4} + 229\cdot 239^{5} + 207\cdot 239^{6} +O\left(239^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 216 + 81\cdot 239 + 55\cdot 239^{2} + 174\cdot 239^{3} + 106\cdot 239^{4} + 143\cdot 239^{5} + 109\cdot 239^{6} +O\left(239^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,7,8,6,5,2)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,5,8,4)$
$(1,8)(4,5)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(4,5)$ $0$ $0$
$4$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$ $0$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$ $0$
$2$ $4$ $(1,5,8,4)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,4,8,5)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,3,7,6)(4,5)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,6,7,3)(4,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$4$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$4$ $8$ $(1,3,4,7,8,6,5,2)$ $0$ $0$
$4$ $8$ $(1,7,5,3,8,2,4,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.