Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 + 93\cdot 239 + 155\cdot 239^{2} + 152\cdot 239^{3} + 154\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 92 + 154\cdot 239 + 26\cdot 239^{2} + 233\cdot 239^{3} + 21\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 122 + 203\cdot 239 + 211\cdot 239^{2} + 50\cdot 239^{3} + 166\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 126 + 68\cdot 239 + 25\cdot 239^{2} + 86\cdot 239^{3} + 60\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 187 + 73\cdot 239 + 178\cdot 239^{2} + 232\cdot 239^{3} + 208\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 194 + 202\cdot 239 + 87\cdot 239^{2} + 65\cdot 239^{3} + 69\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 211 + 85\cdot 239 + 207\cdot 239^{2} + 116\cdot 239^{3} + 137\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 236 + 73\cdot 239 + 63\cdot 239^{2} + 18\cdot 239^{3} + 137\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,5)(4,7)$ |
| $(1,6,8,2)(3,4,5,7)$ |
| $(1,5,8,3)(2,4,6,7)$ |
| $(3,7,5,4)$ |
| $(1,8)(2,6)(3,5)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,6)(3,5)(4,7)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(3,5)(4,7)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,5)(3,6)(4,8)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,6,8,2)(3,4,5,7)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,2,8,6)(3,7,5,4)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(3,7,5,4)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(3,4,5,7)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,8)(2,6)(3,4,5,7)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,8)(2,6)(3,7,5,4)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,8,2)(3,7,5,4)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,5,8,3)(2,4,6,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,6,5,8,7,2,3)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,5,2,4,8,3,6,7)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.