Properties

Label 2.2e4_5e2_19e2.4t3.3c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 5^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$144400= 2^{4} \cdot 5^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 4 x^{2} + 92 x + 406 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3\cdot 29 + 14\cdot 29^{2} + 4\cdot 29^{3} + 18\cdot 29^{4} + 8\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 23\cdot 29 + 12\cdot 29^{2} + 11\cdot 29^{3} + 26\cdot 29^{4} + 28\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 28\cdot 29 + 26\cdot 29^{2} + 21\cdot 29^{3} + 15\cdot 29^{4} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 + 2\cdot 29 + 4\cdot 29^{2} + 20\cdot 29^{3} + 26\cdot 29^{4} + 19\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.