Properties

Label 2.2e4_5e2_19.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{4} \cdot 5^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$7600= 2^{4} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} - 35 x^{4} + 275 x^{2} - 475 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 12 + 42\cdot 191 + 53\cdot 191^{2} + 148\cdot 191^{3} + 153\cdot 191^{4} + 110\cdot 191^{5} + 175\cdot 191^{6} + 54\cdot 191^{7} + 120\cdot 191^{8} + 47\cdot 191^{9} + 2\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 20 + 97\cdot 191 + 22\cdot 191^{2} + 160\cdot 191^{3} + 150\cdot 191^{4} + 172\cdot 191^{5} + 174\cdot 191^{6} + 42\cdot 191^{7} + 145\cdot 191^{8} + 125\cdot 191^{9} + 174\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 42 + 172\cdot 191 + 141\cdot 191^{2} + 40\cdot 191^{3} + 5\cdot 191^{4} + 97\cdot 191^{5} + 170\cdot 191^{6} + 133\cdot 191^{7} + 91\cdot 191^{8} + 141\cdot 191^{9} + 12\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 84 + 29\cdot 191 + 31\cdot 191^{2} + 53\cdot 191^{3} + 126\cdot 191^{4} + 32\cdot 191^{5} + 152\cdot 191^{6} + 155\cdot 191^{7} + 168\cdot 191^{8} + 184\cdot 191^{9} + 87\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 107 + 161\cdot 191 + 159\cdot 191^{2} + 137\cdot 191^{3} + 64\cdot 191^{4} + 158\cdot 191^{5} + 38\cdot 191^{6} + 35\cdot 191^{7} + 22\cdot 191^{8} + 6\cdot 191^{9} + 103\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 149 + 18\cdot 191 + 49\cdot 191^{2} + 150\cdot 191^{3} + 185\cdot 191^{4} + 93\cdot 191^{5} + 20\cdot 191^{6} + 57\cdot 191^{7} + 99\cdot 191^{8} + 49\cdot 191^{9} + 178\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 171 + 93\cdot 191 + 168\cdot 191^{2} + 30\cdot 191^{3} + 40\cdot 191^{4} + 18\cdot 191^{5} + 16\cdot 191^{6} + 148\cdot 191^{7} + 45\cdot 191^{8} + 65\cdot 191^{9} + 16\cdot 191^{10} +O\left(191^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 179 + 148\cdot 191 + 137\cdot 191^{2} + 42\cdot 191^{3} + 37\cdot 191^{4} + 80\cdot 191^{5} + 15\cdot 191^{6} + 136\cdot 191^{7} + 70\cdot 191^{8} + 143\cdot 191^{9} + 188\cdot 191^{10} +O\left(191^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,4,7,8,3,5,2)$
$(1,7,8,2)(3,4,6,5)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(3,6)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$8$$(1,6,4,7,8,3,5,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,4,2,8,6,5,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.