Properties

Label 2.2e4_5e2_13.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 5^{2} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5200= 2^{4} \cdot 5^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + 14 x^{3} + 36 x^{2} + 12 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 18 + \left(34 a + 21\right)\cdot 37 + \left(8 a + 24\right)\cdot 37^{2} + \left(3 a + 12\right)\cdot 37^{3} + \left(16 a + 1\right)\cdot 37^{4} + \left(32 a + 36\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 14 + \left(34 a + 14\right)\cdot 37 + \left(14 a + 23\right)\cdot 37^{2} + \left(13 a + 26\right)\cdot 37^{3} + \left(12 a + 13\right)\cdot 37^{4} + \left(10 a + 29\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 27 + \left(2 a + 19\right)\cdot 37 + \left(28 a + 25\right)\cdot 37^{2} + \left(33 a + 16\right)\cdot 37^{3} + \left(20 a + 25\right)\cdot 37^{4} + \left(4 a + 1\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 33 + 27\cdot 37 + 31\cdot 37^{2} + 34\cdot 37^{3} + 13\cdot 37^{4} + 12\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 24 + 29\cdot 37 + 30\cdot 37^{2} + 28\cdot 37^{3} + 6\cdot 37^{4} + 10\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 34 + \left(2 a + 34\right)\cdot 37 + \left(22 a + 11\right)\cdot 37^{2} + \left(23 a + 28\right)\cdot 37^{3} + \left(24 a + 12\right)\cdot 37^{4} + \left(26 a + 21\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)(4,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,5)(4,6)$ $0$
$2$ $3$ $(1,3,5)(2,4,6)$ $-1$
$2$ $6$ $(1,4,3,6,5,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.