Properties

Label 2.2e4_5_47.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 5 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$3760= 2^{4} \cdot 5 \cdot 47 $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 4 x^{2} + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.5_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 10 + 17 + \left(14 a + 1\right)\cdot 17^{2} + \left(5 a + 15\right)\cdot 17^{3} + \left(10 a + 7\right)\cdot 17^{4} + \left(15 a + 11\right)\cdot 17^{5} + \left(2 a + 8\right)\cdot 17^{6} + \left(15 a + 5\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 16\cdot 17 + 12\cdot 17^{3} + 13\cdot 17^{4} + 5\cdot 17^{5} + 12\cdot 17^{6} + 10\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 13 + \left(16 a + 15\right)\cdot 17 + \left(2 a + 14\right)\cdot 17^{2} + \left(11 a + 6\right)\cdot 17^{3} + \left(6 a + 12\right)\cdot 17^{4} + \left(a + 16\right)\cdot 17^{5} + \left(14 a + 12\right)\cdot 17^{6} + a\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 7 + \left(16 a + 15\right)\cdot 17 + \left(2 a + 15\right)\cdot 17^{2} + \left(11 a + 1\right)\cdot 17^{3} + \left(6 a + 9\right)\cdot 17^{4} + \left(a + 5\right)\cdot 17^{5} + \left(14 a + 8\right)\cdot 17^{6} + \left(a + 11\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 6 + 16\cdot 17^{2} + 4\cdot 17^{3} + 3\cdot 17^{4} + 11\cdot 17^{5} + 4\cdot 17^{6} + 6\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 4 + 17 + \left(14 a + 2\right)\cdot 17^{2} + \left(5 a + 10\right)\cdot 17^{3} + \left(10 a + 4\right)\cdot 17^{4} + 15 a\cdot 17^{5} + \left(2 a + 4\right)\cdot 17^{6} + \left(15 a + 16\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)(2,5)(3,6)$
$(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(4,5)$$0$
$3$$2$$(1,5)(2,4)(3,6)$$0$
$2$$3$$(1,3,2)(4,6,5)$$-1$
$2$$6$$(1,6,2,4,3,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.