Properties

Label 2.2e4_5_47.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 5 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$3760= 2^{4} \cdot 5 \cdot 47 $
Artin number field: Splitting field of $f= x^{6} + 12 x^{4} + 36 x^{2} - 940 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.5_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 4 + \left(6 a + 6\right)\cdot 7 + \left(5 a + 2\right)\cdot 7^{2} + 4\cdot 7^{3} + \left(2 a + 3\right)\cdot 7^{5} + 6\cdot 7^{6} + \left(4 a + 5\right)\cdot 7^{7} + \left(a + 5\right)\cdot 7^{8} + \left(a + 1\right)\cdot 7^{9} + \left(6 a + 3\right)\cdot 7^{10} + \left(2 a + 4\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 3 + 3\cdot 7 + 5\cdot 7^{2} + 3\cdot 7^{3} + 7^{5} + 4\cdot 7^{6} + 7^{7} + 2\cdot 7^{8} + 3\cdot 7^{9} + 4\cdot 7^{10} + 5\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 1 + \left(6 a + 3\right)\cdot 7 + \left(5 a + 4\right)\cdot 7^{2} + \left(2 a + 2\right)\cdot 7^{5} + 2\cdot 7^{6} + \left(4 a + 4\right)\cdot 7^{7} + \left(a + 3\right)\cdot 7^{8} + \left(a + 5\right)\cdot 7^{9} + \left(6 a + 5\right)\cdot 7^{10} + \left(2 a + 5\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 3 + \left(a + 4\right)\cdot 7^{2} + \left(6 a + 2\right)\cdot 7^{3} + \left(6 a + 6\right)\cdot 7^{4} + \left(4 a + 3\right)\cdot 7^{5} + 6 a\cdot 7^{6} + \left(2 a + 1\right)\cdot 7^{7} + \left(5 a + 1\right)\cdot 7^{8} + \left(5 a + 5\right)\cdot 7^{9} + 3\cdot 7^{10} + \left(4 a + 2\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 4 + 3\cdot 7 + 7^{2} + 3\cdot 7^{3} + 6\cdot 7^{4} + 5\cdot 7^{5} + 2\cdot 7^{6} + 5\cdot 7^{7} + 4\cdot 7^{8} + 3\cdot 7^{9} + 2\cdot 7^{10} + 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 6 + 3\cdot 7 + \left(a + 2\right)\cdot 7^{2} + \left(6 a + 6\right)\cdot 7^{3} + \left(6 a + 6\right)\cdot 7^{4} + \left(4 a + 4\right)\cdot 7^{5} + \left(6 a + 4\right)\cdot 7^{6} + \left(2 a + 2\right)\cdot 7^{7} + \left(5 a + 3\right)\cdot 7^{8} + \left(5 a + 1\right)\cdot 7^{9} + 7^{10} + \left(4 a + 1\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(3,4)$$0$
$2$$3$$(1,5,6)(2,3,4)$$-1$
$2$$6$$(1,3,5,4,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.