Properties

Label 2.2e4_5_31e2.4t3.4
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 5 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$76880= 2^{4} \cdot 5 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 60 x^{2} + 30 x + 1217 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 33\cdot 61 + 17\cdot 61^{2} + 35\cdot 61^{3} + 43\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 21\cdot 61 + 49\cdot 61^{2} + 8\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 16\cdot 61 + 57\cdot 61^{2} + 58\cdot 61^{3} + 6\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 50\cdot 61 + 58\cdot 61^{2} + 18\cdot 61^{3} + 49\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.