Properties

Label 2.2e4_5_31e2.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 5 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$76880= 2^{4} \cdot 5 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - 31 x^{2} - 961 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 24\cdot 61 + 6\cdot 61^{2} + 52\cdot 61^{3} + 20\cdot 61^{4} + 44\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 60\cdot 61 + 42\cdot 61^{2} + 41\cdot 61^{3} + 8\cdot 61^{4} + 43\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 + 18\cdot 61^{2} + 19\cdot 61^{3} + 52\cdot 61^{4} + 17\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 58 + 36\cdot 61 + 54\cdot 61^{2} + 8\cdot 61^{3} + 40\cdot 61^{4} + 16\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.