Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 64 + 11\cdot 109 + 90\cdot 109^{2} + 93\cdot 109^{3} + 77\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 70 + 81\cdot 109 + 6\cdot 109^{2} + 82\cdot 109^{3} + 47\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 94 + 2\cdot 109 + 36\cdot 109^{2} + 80\cdot 109^{3} + 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 101 + 12\cdot 109 + 85\cdot 109^{2} + 70\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3)(2,4)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,2)$ | $0$ |
| $2$ | $4$ | $(1,4,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.