Properties

Label 2.2e4_5_31.4t3.6
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 5 \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2480= 2^{4} \cdot 5 \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 8 x^{2} - 22 x + 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 64 + 11\cdot 109 + 90\cdot 109^{2} + 93\cdot 109^{3} + 77\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 70 + 81\cdot 109 + 6\cdot 109^{2} + 82\cdot 109^{3} + 47\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 94 + 2\cdot 109 + 36\cdot 109^{2} + 80\cdot 109^{3} + 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 101 + 12\cdot 109 + 85\cdot 109^{2} + 70\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.