Properties

Label 2.2e4_5_29e2.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 5 \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$67280= 2^{4} \cdot 5 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 56 x^{2} + 28 x + 1066 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2\cdot 41 + 5\cdot 41^{2} + 26\cdot 41^{3} + 19\cdot 41^{4} + 17\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 30\cdot 41 + 31\cdot 41^{2} + 3\cdot 41^{3} + 6\cdot 41^{4} + 10\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 20\cdot 41 + 2\cdot 41^{2} + 19\cdot 41^{3} + 18\cdot 41^{4} + 10\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 33 + 29\cdot 41 + 41^{2} + 33\cdot 41^{3} + 37\cdot 41^{4} + 2\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.