Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 3\cdot 41 + 29\cdot 41^{2} + 35\cdot 41^{3} + 35\cdot 41^{4} + 36\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 37\cdot 41 + 4\cdot 41^{2} + 23\cdot 41^{3} + 26\cdot 41^{4} + 5\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 + 3\cdot 41 + 36\cdot 41^{2} + 17\cdot 41^{3} + 14\cdot 41^{4} + 35\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 + 37\cdot 41 + 11\cdot 41^{2} + 5\cdot 41^{3} + 5\cdot 41^{4} + 4\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.