Properties

Label 2.2e4_5_19.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1520= 2^{4} \cdot 5 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{6} + 36 x^{4} - 15 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 271 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 44 + 15\cdot 271 + 235\cdot 271^{2} + 53\cdot 271^{3} + 198\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 93\cdot 271 + 6\cdot 271^{2} + 246\cdot 271^{3} + 198\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 + 45\cdot 271 + 66\cdot 271^{2} + 100\cdot 271^{3} + 25\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 122 + 206\cdot 271 + 56\cdot 271^{2} + 156\cdot 271^{3} + 55\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 149 + 64\cdot 271 + 214\cdot 271^{2} + 114\cdot 271^{3} + 215\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 153 + 225\cdot 271 + 204\cdot 271^{2} + 170\cdot 271^{3} + 245\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 204 + 177\cdot 271 + 264\cdot 271^{2} + 24\cdot 271^{3} + 72\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 227 + 255\cdot 271 + 35\cdot 271^{2} + 217\cdot 271^{3} + 72\cdot 271^{4} +O\left(271^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.