Properties

Label 2.2e4_5_17.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1360= 2^{4} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 6 x^{5} + 43 x^{4} - 82 x^{3} + 2 x^{2} - 42 x + 441 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 5\cdot 37 + 8\cdot 37^{2} + 35\cdot 37^{3} + 22\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 28\cdot 37 + 7\cdot 37^{2} + 16\cdot 37^{3} + 12\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 18\cdot 37 + 16\cdot 37^{2} + 32\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 11\cdot 37 + 20\cdot 37^{2} + 35\cdot 37^{3} + 22\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 15\cdot 37 + 27\cdot 37^{2} + 25\cdot 37^{3} + 19\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 + 28\cdot 37 + 9\cdot 37^{2} + 17\cdot 37^{3} + 17\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 26 + 28\cdot 37 + 35\cdot 37^{2} + 22\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 36 + 11\cdot 37 + 22\cdot 37^{2} + 36\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.