Properties

Label 2.2e4_5_17.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1360= 2^{4} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 2 x^{5} + 39 x^{4} - 90 x^{3} + 50 x^{2} - 150 x + 225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 61\cdot 73 + 36\cdot 73^{2} + 41\cdot 73^{3} + 43\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 26\cdot 73 + 68\cdot 73^{2} + 66\cdot 73^{3} + 45\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 36\cdot 73 + 33\cdot 73^{2} + 62\cdot 73^{3} + 12\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 73 + 65\cdot 73^{2} + 14\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 + 50\cdot 73 + 5\cdot 73^{2} + 19\cdot 73^{3} + 55\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 22\cdot 73 + 14\cdot 73^{2} + 24\cdot 73^{3} + 64\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 63 + 60\cdot 73 + 29\cdot 73^{2} + 65\cdot 73^{3} + 22\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 32\cdot 73 + 38\cdot 73^{2} + 70\cdot 73^{3} + 31\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,8)(2,7,3,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,7)(2,5)(3,8)(4,6)$$0$
$2$$4$$(1,5,4,8)(2,7,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.