Properties

Label 2.2e4_5_149.4t3.13
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 149 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11920= 2^{4} \cdot 5 \cdot 149 $
Artin number field: Splitting field of $f= x^{8} - 28 x^{6} + 476 x^{4} + 8000 x^{2} + 19600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12 + 28\cdot 61 + 2\cdot 61^{2} + 30\cdot 61^{3} + 34\cdot 61^{4} + 10\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 46\cdot 61 + 60\cdot 61^{2} + 53\cdot 61^{3} + 29\cdot 61^{4} + 51\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 25 + 50\cdot 61 + 13\cdot 61^{2} + 13\cdot 61^{3} + 39\cdot 61^{4} + 25\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 7\cdot 61 + 11\cdot 61^{2} + 37\cdot 61^{3} + 34\cdot 61^{4} + 5\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 + 53\cdot 61 + 49\cdot 61^{2} + 23\cdot 61^{3} + 26\cdot 61^{4} + 55\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 + 10\cdot 61 + 47\cdot 61^{2} + 47\cdot 61^{3} + 21\cdot 61^{4} + 35\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 48 + 14\cdot 61 + 7\cdot 61^{3} + 31\cdot 61^{4} + 9\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 49 + 32\cdot 61 + 58\cdot 61^{2} + 30\cdot 61^{3} + 26\cdot 61^{4} + 50\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $4$ $(1,7,4,6)(2,5,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.