Properties

Label 2.2e4_5_13.8t6.4
Dimension 2
Group $D_{8}$
Conductor $ 2^{4} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$1040= 2^{4} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 18 x^{5} + 19 x^{4} - 10 x^{3} + 6 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 7 + 62\cdot 137^{2} + 118\cdot 137^{3} + 65\cdot 137^{4} + 99\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 41 + 32\cdot 137 + 74\cdot 137^{2} + 53\cdot 137^{3} + 97\cdot 137^{4} + 130\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 56 + 134\cdot 137^{2} + 54\cdot 137^{3} + 136\cdot 137^{4} + 106\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 94 + 88\cdot 137 + 124\cdot 137^{2} + 90\cdot 137^{3} + 40\cdot 137^{4} + 41\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 108 + 84\cdot 137 + 29\cdot 137^{2} + 98\cdot 137^{3} + 7\cdot 137^{4} + 36\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 119 + 47\cdot 137 + 90\cdot 137^{2} + 9\cdot 137^{3} + 31\cdot 137^{4} + 26\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 130 + 3\cdot 137 + 20\cdot 137^{2} + 111\cdot 137^{3} + 98\cdot 137^{4} + 104\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 134 + 15\cdot 137 + 13\cdot 137^{2} + 11\cdot 137^{3} + 70\cdot 137^{4} + 2\cdot 137^{5} +O\left(137^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,5,4,7)(2,6,8,3)$
$(1,8,5,3,4,2,7,6)$
$(2,3)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $-2$ $-2$
$4$ $2$ $(2,3)(5,7)(6,8)$ $0$ $0$
$4$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $0$ $0$
$2$ $4$ $(1,5,4,7)(2,6,8,3)$ $0$ $0$
$2$ $8$ $(1,8,5,3,4,2,7,6)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,7,8,4,6,5,2)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.