Properties

Label 2.2e4_5_13.8t6.3
Dimension 2
Group $D_{8}$
Conductor $ 2^{4} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$1040= 2^{4} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 6 x^{6} + 14 x^{5} + 11 x^{4} - 46 x^{3} + 44 x^{2} - 12 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 24 + 81\cdot 97 + 53\cdot 97^{2} + 12\cdot 97^{3} + 7\cdot 97^{4} + 10\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 46 + 67\cdot 97 + 88\cdot 97^{2} + 84\cdot 97^{3} + 63\cdot 97^{4} + 72\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 47 + 37\cdot 97 + 21\cdot 97^{2} + 80\cdot 97^{3} + 6\cdot 97^{4} + 59\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 58 + 64\cdot 97 + 84\cdot 97^{2} + 32\cdot 97^{3} + 51\cdot 97^{4} + 23\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 65 + 31\cdot 97 + 21\cdot 97^{2} + 39\cdot 97^{3} + 95\cdot 97^{4} + 88\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 66 + 79\cdot 97 + 84\cdot 97^{2} + 20\cdot 97^{3} + 68\cdot 97^{4} + 61\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 85 + 49\cdot 97 + 80\cdot 97^{2} + 35\cdot 97^{3} + 59\cdot 97^{4} + 73\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 96 + 72\cdot 97 + 49\cdot 97^{2} + 81\cdot 97^{3} + 35\cdot 97^{4} + 95\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,6)(5,8)$
$(1,6)(2,8)(3,7)(4,5)$
$(1,7,5,8)(2,4,3,6)$
$(1,5)(2,3)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $-2$ $-2$
$4$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$ $0$
$4$ $2$ $(1,7)(4,6)(5,8)$ $0$ $0$
$2$ $4$ $(1,7,5,8)(2,4,3,6)$ $0$ $0$
$2$ $8$ $(1,4,8,2,5,6,7,3)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,2,7,4,5,3,8,6)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.