Properties

Label 2.2e4_5_11e2.4t3.7
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9680= 2^{4} \cdot 5 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 22 x^{5} + 63 x^{4} - 198 x^{3} + 512 x^{2} + 608 x + 361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 2\cdot 61 + 51\cdot 61^{2} + 8\cdot 61^{3} + 25\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 22\cdot 61 + 46\cdot 61^{2} + 16\cdot 61^{3} + 43\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 44\cdot 61 + 47\cdot 61^{2} + 46\cdot 61^{3} + 39\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 25\cdot 61 + 49\cdot 61^{2} + 11\cdot 61^{3} + 3\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 4\cdot 61 + 31\cdot 61^{2} + 46\cdot 61^{3} + 9\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 51\cdot 61 + 40\cdot 61^{2} + 35\cdot 61^{3} + 12\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 57 + 31\cdot 61 + 17\cdot 61^{2} + 56\cdot 61^{3} + 45\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 60\cdot 61 + 20\cdot 61^{2} + 21\cdot 61^{3} + 3\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,7,8,6)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,8)(5,7)$ $0$
$2$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,7,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.