Properties

Label 2.2e4_5_11.4t3.9c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 5 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$880= 2^{4} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} - 22 x^{5} + 55 x^{4} - 22 x^{3} + 350 x^{2} - 374 x + 229 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_5_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 66\cdot 79 + 33\cdot 79^{2} + 8\cdot 79^{3} + 36\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 19\cdot 79 + 79^{2} + 24\cdot 79^{3} + 20\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 24\cdot 79 + 62\cdot 79^{2} + 73\cdot 79^{3} + 26\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 9\cdot 79 + 48\cdot 79^{2} + 37\cdot 79^{3} + 3\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 + 48\cdot 79 + 60\cdot 79^{2} + 51\cdot 79^{3} + 74\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 62 + 75\cdot 79 + 65\cdot 79^{2} + 73\cdot 79^{3} + 52\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 72 + 33\cdot 79 + 15\cdot 79^{2} + 60\cdot 79^{3} + 43\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 73 + 38\cdot 79 + 28\cdot 79^{2} + 65\cdot 79^{3} + 57\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,6)(5,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,8)(5,7)$$-2$
$2$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$2$$2$$(1,3)(2,5)(4,8)(6,7)$$0$
$2$$4$$(1,5,4,7)(2,3,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.