Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 1 + \left(a + 15\right)\cdot 19 + \left(3 a + 4\right)\cdot 19^{2} + \left(2 a + 15\right)\cdot 19^{3} + 13 a\cdot 19^{4} + \left(6 a + 4\right)\cdot 19^{5} + \left(13 a + 13\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 10\cdot 19 + 5\cdot 19^{2} + 18\cdot 19^{3} + 16\cdot 19^{4} + 18\cdot 19^{5} +O\left(19^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 a + 16 + 5\cdot 19 + \left(2 a + 8\right)\cdot 19^{2} + \left(11 a + 5\right)\cdot 19^{3} + \left(3 a + 13\right)\cdot 19^{4} + \left(9 a + 6\right)\cdot 19^{5} + \left(2 a + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 a + 11 + \left(18 a + 11\right)\cdot 19 + \left(16 a + 9\right)\cdot 19^{2} + \left(7 a + 14\right)\cdot 19^{3} + \left(15 a + 5\right)\cdot 19^{4} + \left(9 a + 12\right)\cdot 19^{5} + \left(16 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 2 + \left(13 a + 15\right)\cdot 19 + \left(7 a + 14\right)\cdot 19^{2} + \left(2 a + 5\right)\cdot 19^{3} + \left(8 a + 3\right)\cdot 19^{4} + \left(12 a + 6\right)\cdot 19^{5} + \left(6 a + 11\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 8 + \left(17 a + 9\right)\cdot 19 + \left(15 a + 6\right)\cdot 19^{2} + \left(16 a + 14\right)\cdot 19^{3} + \left(5 a + 11\right)\cdot 19^{4} + \left(12 a + 16\right)\cdot 19^{5} + 5 a\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 18 a + 3 + \left(5 a + 8\right)\cdot 19 + \left(11 a + 9\right)\cdot 19^{2} + 16 a\cdot 19^{3} + \left(10 a + 9\right)\cdot 19^{4} + \left(6 a + 10\right)\cdot 19^{5} + \left(12 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 10 + 17\cdot 19^{2} + 19^{3} + 15\cdot 19^{4} + 19^{6} +O\left(19^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,5,3)(2,7,8,6)$ |
| $(1,5)(2,8)(3,4)(6,7)$ |
| $(1,7)(2,8)(5,6)$ |
| $(1,6,5,7)(2,4,8,3)$ |
| $(1,8,6)(2,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,8)(3,4)(6,7)$ |
$-2$ |
$-2$ |
| $12$ |
$2$ |
$(1,7)(2,8)(5,6)$ |
$0$ |
$0$ |
| $8$ |
$3$ |
$(2,4,6)(3,7,8)$ |
$-1$ |
$-1$ |
| $6$ |
$4$ |
$(1,6,5,7)(2,4,8,3)$ |
$0$ |
$0$ |
| $8$ |
$6$ |
$(1,6,4,5,7,3)(2,8)$ |
$1$ |
$1$ |
| $6$ |
$8$ |
$(1,8,7,4,5,2,6,3)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ |
$8$ |
$(1,2,7,3,5,8,6,4)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.