Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 769 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 66 + 338\cdot 769 + 567\cdot 769^{2} + 583\cdot 769^{3} + 75\cdot 769^{4} + 737\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 104 + 456\cdot 769 + 442\cdot 769^{2} + 653\cdot 769^{3} + 81\cdot 769^{4} + 340\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 185 + 276\cdot 769 + 595\cdot 769^{2} + 48\cdot 769^{3} + 155\cdot 769^{4} + 13\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 297 + 567\cdot 769 + 177\cdot 769^{2} + 161\cdot 769^{3} + 582\cdot 769^{4} + 575\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 523 + 337\cdot 769 + 553\cdot 769^{2} + 700\cdot 769^{3} + 648\cdot 769^{4} + 348\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 535 + 356\cdot 769 + 211\cdot 769^{2} + 627\cdot 769^{3} + 151\cdot 769^{4} + 600\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 642 + 275\cdot 769 + 581\cdot 769^{2} + 165\cdot 769^{3} + 728\cdot 769^{4} + 393\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 728 + 467\cdot 769 + 715\cdot 769^{2} + 134\cdot 769^{3} + 652\cdot 769^{4} + 66\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,8)(4,6)$ |
| $(2,6,8,4)$ |
| $(1,2)(3,6)(4,5)(7,8)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,5,7,3)(2,4,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $-2$ |
| $2$ | $2$ | $(2,8)(4,6)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,6)(4,5)(7,8)$ | $0$ |
| $1$ | $4$ | $(1,5,7,3)(2,4,8,6)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,3,7,5)(2,6,8,4)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(2,6,8,4)$ | $-\zeta_{4} - 1$ |
| $2$ | $4$ | $(2,4,8,6)$ | $\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,7)(2,4,8,6)(3,5)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,7)(2,6,8,4)(3,5)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,5,7,3)(2,6,8,4)$ | $0$ |
| $4$ | $4$ | $(1,8,7,2)(3,4,5,6)$ | $0$ |
| $4$ | $8$ | $(1,6,3,8,7,4,5,2)$ | $0$ |
| $4$ | $8$ | $(1,8,5,6,7,2,3,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.