Properties

Label 2.2e4_41e2.8t17.2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{4} \cdot 41^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$26896= 2^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 11 x^{4} - 6 x^{3} - 4 x^{2} + 4 x + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 769 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 66 + 338\cdot 769 + 567\cdot 769^{2} + 583\cdot 769^{3} + 75\cdot 769^{4} + 737\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 104 + 456\cdot 769 + 442\cdot 769^{2} + 653\cdot 769^{3} + 81\cdot 769^{4} + 340\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 185 + 276\cdot 769 + 595\cdot 769^{2} + 48\cdot 769^{3} + 155\cdot 769^{4} + 13\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 297 + 567\cdot 769 + 177\cdot 769^{2} + 161\cdot 769^{3} + 582\cdot 769^{4} + 575\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 523 + 337\cdot 769 + 553\cdot 769^{2} + 700\cdot 769^{3} + 648\cdot 769^{4} + 348\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 535 + 356\cdot 769 + 211\cdot 769^{2} + 627\cdot 769^{3} + 151\cdot 769^{4} + 600\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 642 + 275\cdot 769 + 581\cdot 769^{2} + 165\cdot 769^{3} + 728\cdot 769^{4} + 393\cdot 769^{5} +O\left(769^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 728 + 467\cdot 769 + 715\cdot 769^{2} + 134\cdot 769^{3} + 652\cdot 769^{4} + 66\cdot 769^{5} +O\left(769^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(4,6)$
$(2,6,8,4)$
$(1,2)(3,6)(4,5)(7,8)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,5,7,3)(2,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$ $-2$
$2$ $2$ $(2,8)(4,6)$ $0$ $0$
$4$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$ $0$
$1$ $4$ $(1,5,7,3)(2,4,8,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,3,7,5)(2,6,8,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(2,6,8,4)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(2,4,8,6)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,7)(2,4,8,6)(3,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,7)(2,6,8,4)(3,5)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,5,7,3)(2,6,8,4)$ $0$ $0$
$4$ $4$ $(1,8,7,2)(3,4,5,6)$ $0$ $0$
$4$ $8$ $(1,6,3,8,7,4,5,2)$ $0$ $0$
$4$ $8$ $(1,8,5,6,7,2,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.