Properties

Label 2.2e4_3e5.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{4} \cdot 3^{5}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3888= 2^{4} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{4} - 4 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 23 + \left(9 a + 26\right)\cdot 29 + \left(14 a + 26\right)\cdot 29^{2} + \left(3 a + 12\right)\cdot 29^{3} + 29^{4} + \left(17 a + 1\right)\cdot 29^{5} + \left(5 a + 9\right)\cdot 29^{6} + \left(18 a + 15\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 19 + 20\cdot 29 + 23\cdot 29^{2} + 7\cdot 29^{3} + 25\cdot 29^{4} + 10\cdot 29^{5} + 17\cdot 29^{6} + 9\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 2 + \left(3 a + 11\right)\cdot 29 + \left(22 a + 22\right)\cdot 29^{2} + \left(12 a + 10\right)\cdot 29^{3} + 17 a\cdot 29^{4} + \left(25 a + 3\right)\cdot 29^{5} + \left(7 a + 16\right)\cdot 29^{6} + \left(23 a + 16\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 25 + \left(3 a + 12\right)\cdot 29 + \left(22 a + 15\right)\cdot 29^{2} + \left(12 a + 5\right)\cdot 29^{3} + \left(17 a + 12\right)\cdot 29^{4} + \left(25 a + 2\right)\cdot 29^{5} + \left(7 a + 28\right)\cdot 29^{6} + \left(23 a + 19\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 6 + \left(19 a + 2\right)\cdot 29 + \left(14 a + 2\right)\cdot 29^{2} + \left(25 a + 16\right)\cdot 29^{3} + \left(28 a + 27\right)\cdot 29^{4} + \left(11 a + 27\right)\cdot 29^{5} + \left(23 a + 19\right)\cdot 29^{6} + \left(10 a + 13\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 + 8\cdot 29 + 5\cdot 29^{2} + 21\cdot 29^{3} + 3\cdot 29^{4} + 18\cdot 29^{5} + 11\cdot 29^{6} + 19\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 27 + \left(25 a + 17\right)\cdot 29 + \left(6 a + 6\right)\cdot 29^{2} + \left(16 a + 18\right)\cdot 29^{3} + \left(11 a + 28\right)\cdot 29^{4} + \left(3 a + 25\right)\cdot 29^{5} + \left(21 a + 12\right)\cdot 29^{6} + \left(5 a + 12\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 17 a + 4 + \left(25 a + 16\right)\cdot 29 + \left(6 a + 13\right)\cdot 29^{2} + \left(16 a + 23\right)\cdot 29^{3} + \left(11 a + 16\right)\cdot 29^{4} + \left(3 a + 26\right)\cdot 29^{5} + 21 a\cdot 29^{6} + \left(5 a + 9\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7,4)(3,8,6)$
$(1,8,5,4)(2,3,6,7)$
$(2,3)(4,8)(6,7)$
$(1,7,5,3)(2,8,6,4)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$12$$2$$(2,3)(4,8)(6,7)$$0$
$8$$3$$(1,6,4)(2,8,5)$$-1$
$6$$4$$(1,8,5,4)(2,3,6,7)$$0$
$8$$6$$(1,7,2,5,3,6)(4,8)$$1$
$6$$8$$(1,7,4,6,5,3,8,2)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,3,4,2,5,7,8,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.