Properties

Label 2.2e4_3e2_7e2.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$7056= 2^{4} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 42 x^{4} - 147 x^{2} - 147 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 1 + 45\cdot 67 + 34\cdot 67^{2} + 42\cdot 67^{3} + 9\cdot 67^{4} + 37\cdot 67^{5} + 20\cdot 67^{6} + 15\cdot 67^{7} + 12\cdot 67^{8} + 14\cdot 67^{9} + 63\cdot 67^{10} + 39\cdot 67^{11} + 58\cdot 67^{12} + 38\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 7 + 18\cdot 67 + 27\cdot 67^{2} + 55\cdot 67^{3} + 45\cdot 67^{4} + 29\cdot 67^{5} + 6\cdot 67^{7} + 49\cdot 67^{8} + 37\cdot 67^{9} + 67^{10} + 49\cdot 67^{11} + 60\cdot 67^{12} + 58\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 28 + 28\cdot 67 + 51\cdot 67^{2} + 5\cdot 67^{3} + 55\cdot 67^{4} + 33\cdot 67^{5} + 24\cdot 67^{6} + 39\cdot 67^{7} + 15\cdot 67^{8} + 21\cdot 67^{9} + 29\cdot 67^{10} + 39\cdot 67^{11} + 21\cdot 67^{12} + 55\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 29 + 14\cdot 67 + 49\cdot 67^{2} + 62\cdot 67^{3} + 18\cdot 67^{4} + 67^{5} + 62\cdot 67^{6} + 2\cdot 67^{7} + 22\cdot 67^{8} + 65\cdot 67^{9} + 67^{10} + 7\cdot 67^{11} + 43\cdot 67^{12} + 30\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 38 + 52\cdot 67 + 17\cdot 67^{2} + 4\cdot 67^{3} + 48\cdot 67^{4} + 65\cdot 67^{5} + 4\cdot 67^{6} + 64\cdot 67^{7} + 44\cdot 67^{8} + 67^{9} + 65\cdot 67^{10} + 59\cdot 67^{11} + 23\cdot 67^{12} + 36\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 39 + 38\cdot 67 + 15\cdot 67^{2} + 61\cdot 67^{3} + 11\cdot 67^{4} + 33\cdot 67^{5} + 42\cdot 67^{6} + 27\cdot 67^{7} + 51\cdot 67^{8} + 45\cdot 67^{9} + 37\cdot 67^{10} + 27\cdot 67^{11} + 45\cdot 67^{12} + 11\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 60 + 48\cdot 67 + 39\cdot 67^{2} + 11\cdot 67^{3} + 21\cdot 67^{4} + 37\cdot 67^{5} + 66\cdot 67^{6} + 60\cdot 67^{7} + 17\cdot 67^{8} + 29\cdot 67^{9} + 65\cdot 67^{10} + 17\cdot 67^{11} + 6\cdot 67^{12} + 8\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 66 + 21\cdot 67 + 32\cdot 67^{2} + 24\cdot 67^{3} + 57\cdot 67^{4} + 29\cdot 67^{5} + 46\cdot 67^{6} + 51\cdot 67^{7} + 54\cdot 67^{8} + 52\cdot 67^{9} + 3\cdot 67^{10} + 27\cdot 67^{11} + 8\cdot 67^{12} + 28\cdot 67^{13} +O\left(67^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,5,2,6,8,4,7,3)$
$(1,7,8,2)(3,4,6,5)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,2)(4,5)(7,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,5,2,6,8,4,7,3)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,2,3,8,5,7,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.