Properties

Label 2.2e4_3e2_7e2.4t3.9c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7056= 2^{4} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 103 x^{4} - 194 x^{3} + 2 x^{2} + 94 x + 2209 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 33\cdot 41 + 25\cdot 41^{2} + 3\cdot 41^{3} + 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 24\cdot 41 + 37\cdot 41^{2} + 6\cdot 41^{3} + 30\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 41 + 19\cdot 41^{2} + 26\cdot 41^{3} + 25\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 + 7\cdot 41 + 10\cdot 41^{2} + 11\cdot 41^{3} + 27\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 33\cdot 41 + 30\cdot 41^{2} + 29\cdot 41^{3} + 13\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 39\cdot 41 + 21\cdot 41^{2} + 14\cdot 41^{3} + 15\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 29 + 16\cdot 41 + 3\cdot 41^{2} + 34\cdot 41^{3} + 10\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 35 + 7\cdot 41 + 15\cdot 41^{2} + 37\cdot 41^{3} + 39\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2,6,4)(3,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,8)(5,7)$$-2$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$4$$(1,2,6,4)(3,5,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.